博士生导师

王维斌副研究员




王维斌 副研究员

预聘制助理教授

博士生导师

Weibin Wang, Ph.D.

Assistant Professor

Doctoral Advisor



电子邮箱:

E-mail: weibinwang@bjmu.edu.cn

(有意加入本课题组攻读博士学位者、博士后申请者,以及索取实验材料和课题合作者,欢迎邮件联系。Please direct any requests for further information, reagents or project collaboration to us at this e-mail.)


教育与科研经历:

(1) 2004-2008:学士,首都医科大学,医学实验学系

(2) 2008-2011:硕士,北京大学医学部,生物化学与分子生物学系

(3) 2011-2014:博士,北京大学医学部,生物化学与分子生物学系

(4) 2014-2019:博士后,耶鲁大学,分子生物物理与生物化学系

(5) 2019-至今:助理教授,北京大学医学部,放射医学系

Education and research experience:

(1) 2004-2008: B.S., Capital Medical University (Beijing, China), Department of Medical Experiment

(2) 2008-2011: M.S., Peking University Health Science Center (Beijing, China), Department of Biochemistry and Molecular Biology

(3) 2011-2014: Ph.D., Peking University Health Science Center (Beijing, China), Department of Biochemistry and Molecular Biology

(4) 2014-2019: Postdoc, Yale University (New Haven, USA), Department of Molecular Biophysics and Biochemistry

(5) 2019-Present: Assistant Professor, Peking University Health Science Center (Beijing, China), Department of Radiation Medicine


研究方向:

王维斌课题组的主要研究方向是DNA损伤修复与肿瘤。该实验室主要利用生物化学、分子生物学、细胞生物学和模式动物等研究方法,着重研究各种类型DNA损伤的修复机制,及其与基因组不稳定性和肿瘤等疾病的相关性。

该实验室正在开展中的研究课题具体包括:

(1) DNA双链断裂损伤的同源重组修复机制与肿瘤发生、肿瘤放化疗

(2) RNA-DNA杂合体/R-loop的调控机制与基因组不稳定性

(3) DNA交联损伤的修复机制与范可尼贫血综合征

(4) 转录与复制冲突的调控机制与肿瘤的相关性

Research Summary:

The research in the Wang lab is mainly focused on deciphering the mechanism of DNA damage repair and its connections to tumors. Specifically, our group utilize reconstituted biochemical systems, molecular and cellular assays, and animal models, to investigate how various types of DNA damages are repaired accurately to ensure genome stability and thus prevent the occurrence of diseases such as cancers.

Specific ongoing research projects in our lab including:

(1) DNA double-strand break repair by homologous recombination, tumorigenesis and tumor cell response to radiation/chemotherapeutic drugs

(2) RNA-DNA hybrid/R-loop resolving and genome instability

(3) DNA interstrand crosslink (ICL) repair and Fanconi anemia (FA) pathway/syndrome

(4) Transcription-replication conflict (TRC) and its link to cancers


科研基金:

(1) 2019:新引进人才类科研启动经费

(2) 2020:国家自然科学基金面上项目

(3) 2022:国家自然科学基金面上项目

Grant:

(1) 2019: Start-up Research Grant for Newly Introduced Talents

(2) 2020: Grant from the National Natural Science Foundation of China

(3) 2022: Grant from the National Natural Science Foundation of China


以通讯/第一作者发表的论文:

Original research articles (corresponding/first author):

(1) Zhang T, Yang H, Zhou Z, Bai Y, Wang J, Wang W. Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin.  Nature Communications . 2022, in revision

(2) Wang W, Daley JM, Kwon Y, Krasner DS, Sung P. Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles.  Genes & Development . 2017, 31(23-24): 2331-2336

(3) Bai Y, Wang W, Li S, Zhan J, Li H, Zhao M, Zhou XA, Li S, Li X, Huo Y, Shen Q, Zhou M, Zhang H, Luo J, Sung P, Zhu WG, Xu X, Wang J. C1QBP promotes homologous recombination by stabilizing MRE11 and controlling the assembly and activation of MRE11/RAD50/NBS1 complex.  Molecular Cell . 2019, 75(6): 1299-1314

(4) Wang W, Pan K, Chen Y, Huang C, Zhang X. The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression.  Nucleic Acids Research . 2012, 40(3): 981-995

(5) Xu Z, Li X, Li H, Nie C, Liu W, Li S, Liu Z, Wang W, Wang J. Suppression of DDX39B sensitizes ovarian cancer cells to DNA-damaging chemotherapeutic agents via destabilizing BRCA1 mRNA.  Oncogene . 2020, 39(47): 7051-7062

(6) Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X. Transcriptional factor HBP1 targets p16INK4A, upregulating its expression and consequently is involved in Ras-induced premature senescence.  Oncogene . 2010, 29(36): 5083-5094

(7) Wang W, Daley JM, Kwon Y, Xue X, Krasner DS, Miller AS, Nguyen KA, Williamson EA, Shim EY, Lee SE, Hromas R, Sung P. A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection.  Journal of Biological Chemistry . 2018, 293(44): 17061-17069

(8) Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, Tong T, Zhang X. PIASxalpha ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase.  Journal of Biological Chemistry . 2014, 289(6): 3217-3230


受邀以通讯作者发表的综述:

Invited reviews (corresponding author):

(1) Zhang T, Zhou Z, Yang H, Wang W. MRE11-RAD50-NBS1-CtIP: one key nuclease ensemble functions in the maintenance of genome stability.  Genome Instability & Disease . 2022, 3: 123-135

(2) Bai Y, Wang W, Wang J. Targeting DNA repair pathways: mechanisms and potential applications in cancer therapy.  Genome Instability & Disease . 2020, 1(6): 318-338


合作论文 (部分):

Collaborative publications (selected):

(1) Xue C, Wang W, Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection.  PNAS . 2019, 116(13): 6091-6100

(2) Cassani C, Gobbini E, Wang W, Niu H, Clerici M, Sung P, Longhese MP. Tel1 and Rif2 regulate MRX functions in end-tethering and repair of DNA double-strand breaks.  PLoS Biology . 2016, 14(2): e1002387

(3) Daley JM, Jimenez-Sainz J, Wang W, Miller AS, Xue X, Nguyen KA, Jensen RB, Sung P. Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP.  Cell Reports . 2017, 21(2): 324-332

(4) Crickard JB, Xue C, Wang W, Kwon Y, Sung P, Greene EC. The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments.  Nucleic Acids Research . 2019, 47(9): 4694-4706

(5) Biswas H, Goto G, Wang W, Sung P, Sugimoto K. Ddc2/ATRIP promotes Mec1/ATR activation at RPA-ssDNA tracts.  PLoS Genetics . 2019, 15(8): e1008294

(6) Daley JM, Tomimatsu N, Hooks G, Wang W, Miller AS, Xue X, Nguyen KA, Kaur H, Williamson E, Mukherjee B, Hromas R, Burma S, Sung P. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions.  Nature Communications . 2020, 11(1): 3088

(7) Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F, Casari E, Sung P, Tisi R, Zampella G, Longhese MP. The MRX complex regulates Exo1 resection activity by altering DNA end structure.  EMBO . 2018, 37(16): e98588

(8) Cassani C, Gobbini E, Vertemara J, Wang W, Marsella A, Sung P, Tisi R, Zampella G, Longhese MP. Structurally distinct Mre11 domains mediate MRX functions in resection, end-tethering and DNA damage resistance.  Nucleic Acids Research . 2018, 46(6): 2990-3008

(9) Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Jian Ma C, Kwon Y, Rao T, Wang W, Sheng C, Song X, Deng Y, Jimenez-Sainz J, Lu L, Jensen RB, Xiong Y, Kupfer GM, Wiese C, Greene EC, Sung P. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing.  Nature . 2017, 550(7676): 360-365